T. Tableaux : limites de fonctions et opérations.

Dans ces quatre tableaux, f et g représentent deux fonctions et l et l’ représentent deux nombres réels.

Les propriétés suivantes sont valables quand on calcule une limite en -\infty, en +\infty et en en aa désigne un nombre réel.

\lim f=lll+\infty-\infty+\infty
\lim g=l’+\infty-\infty+\infty-\infty-\infty
\lim f+g=l+l’+\infty-\infty+\infty-\inftyForme indéterminée

Remarque quand on dit « forme indéterminée » cela signifie que le théorème ne permet pas de conclure. On modifie l’écriture par exemple en factorisant et on applique un autre théorème par exemple celui sur le produit.

\lim f=ll\ne0\infty0
\lim g=l’\infty\infty\infty
\lim fg=l\times l’\infty\inftyForme indéterminée

Remarque quand on dit « forme indéterminée » cela signifie que le théorème ne permet pas de conclure. On modifie l’écriture par exemple en développant et on applique un autre théorème par exemple celui sur la somme.

Dans le tableau, on a noté \infty sans préciser le signe, il suffira d’appliquer le règle des signes pour conclure.

\lim f=ll\ne0l\infty\infty0
\lim g=l’\ne00\inftyl\infty0
\lim\frac{f}{g}=\frac{l}{l’}\infty0\inftyForme indéterminéeForme indéterminée

Remarque

quand on dit « forme indéterminée » cela signifie que le théorème ne permet pas de conclure. On modifie l’écriture par exemple en simplifiant le quotient et on applique à nouveau le théorème .

Dans le tableau, on a noté \infty sans préciser le signe, il suffira d’appliquer le règle des signes pour conclure.

Si lim_{x\to a}\hspace{0.2cm}f(x)=b et lim_{X\to b}\hspace{0.2cm}g(X)=c alors lim_{x\to a}\hspace{0.2cm}g(f(x))=c

Réponse:

\overrightarrow{DC}=\overrightarrow{HG}.

Résoudre graphiquement f(x)=1

C’est une autre façon de demander de déterminer graphiquement les antécédents de 1.

Je place 1 sur l’axe des ordonnées, je trace alors la parallèle à l’axe des abscisses passant par 1 toute entière. Je repère les points d’intersection avec la courbe. Les abscisses de ces points sont les antécédents de 1.

Les antécédents sont -2 et 2.

Donc S=\{-2;2\}

Remarque : comme on demande de résoudre une équation, il faut écrire ainsi l’ensemble des solutions.