Catégorie : Résoudre une équation du second degré en classe de seconde

Exercices

Exercice de synthèse sur les fonctions en seconde

Partie 1  Soit la fonction définie sur par . Nous allons utiliser la fenêtre active Géogébra ci-dessous pour conjecturer ou valider nos réponses . Il y a trois colonnes : Algèbre, Calcul Formel et Graphique. Déterminer la forme développée et réduite de . Pour conjecturer le résultat, taper sur la

Lire plus »
Problème

2. Problème n°6 :

Le triangle ci-dessous est rectangle en A.  De plus et . On place les points et respectivement sur les segments et tels que . L’ objectif de ce problème est de déterminer la position du point sur le segment pour que l’aire du triangle soit égale à la moitié de

Lire plus »
Problème

2. Problème n°10

Soient et deux points tels que la distance . Soit , un point variable sur le segment . On construit le carré et le triangle rectangle et isocèle en . Où placer le point sur le segment pour que les aires du carré et du triangle soient égales ? Résolution

Lire plus »
Exercices

2. équations du 2nd degré.Exercices.

Sommaire Exercice n°1  https://mathokare.re/wp-content/uploads/sites/7/2019/06/youtube2.équation2nddegré1.mp4  Résoudre dans les équations du second degré suivantes. Vous validerez vos réponses en utilisant la fenêtre de calcul formel située à la fin de l’exercice. correction 2. correction 3. correction 4. correction Exercice n°2  https://mathokare.re/wp-content/uploads/sites/7/2019/06/youtube2.équation2nddegré2new.mp4 Résoudre dans les équations du second degré suivantes. Vous validerez vos

Lire plus »
Cours et exercices d’application

Résoudre une équation du second degré en seconde

Sommaire Exemples de résolution d’équations du second degré La résolution d’équations du second degré en utilisant le discriminant est hors-programme. Seules certaines équations où une factorisation en produit de facteurs du premier degré est possible seront traitées. Exemple n°1  résoudre https://mathokare.re/wp-content/uploads/sites/7/2019/06/youtube2.équation2nddegré1.mp4 conjecture graphique Résoudre C’est une équation du second degré

Lire plus »

J’écris a=… donc a^{2}=…

J’écris b=… donc b^{2}=…

Je calcule 2ab en remplaçant a et b par leurs valeurs.

Je remplace a , b , a^{2}, 2ab et b^{2} par leurs valeurs dans

(a+b)^{2}=a^{2}+2ab+b^{2}

lecture graphique de l’équation réduite de d_{1}

Barême : 0.5 point pour a juste et 0.5 point pour b juste

La droite coupe l’axe des ordonnées en 3 donc b=3

A partir du point de la droite de coordonnées (0;3), j’avance horizontalement de 1 vers la droite. Pour retomber sur la droite, je descends de 0.25  donc a=-0.25

Je remplace a et b  par -0.25 et 3 et dans l’équation y=ax+b et donc :

L’équation réduite de d_{1}  est  y=-0.25x+3

lecture graphique de l’équation réduite de d_{2}

Barême : 0.5 point pour a juste et 0.5 point pour b juste

La droite coupe l’axe des ordonnées en 2 donc b=2

A partir du point de la droite de coordonnées (0;2), j’avance horizontalement de 1 vers la droite. Pour retomber sur la droite, je ne descends pas, je ne monte pas  donc a=0

Je remplace a et b  par 0 et 2 et dans l’équation y=ax+b et donc :

L’équation réduite de d_{2}  est  y=0x+2 \\ \hspace{3.5cm}y=2

lecture graphique de l’équation réduite de d_{3}

Barême : 0.5 point pour a juste et 0.5 point pour b juste

La droite coupe l’axe des ordonnées en -2 donc b=-2

A partir du point de la droite de coordonnées (0;-2), j’avance horizontalement de 1 vers la droite. Pour retomber sur la droite, je monte de 0.5  donc a=0.5

Je remplace a et b  par 0.5 et -2 et dans l’équation y=ax+b et donc :

L’équation réduite de d_{3}  est  y=0.5x-2

lecture graphique de l’équation réduite de d_{4}

Barême : 0.5 point pour a juste et 0.5 point pour b juste

La droite coupe l’axe des ordonnées en 1 donc b=1

A partir du point de la droite de coordonnées (0;1), j’avance horizontalement de 1 vers la droite. Pour retomber sur la droite, je monte de 1  donc a=1

Je remplace a et b  par 1 et 1 et dans l’équation y=ax+b et donc :

L’équation réduite de d_{4}  est  y=1x+1 \\ \hspace{3.5cm}y=x+1

lecture graphique de l’équation réduite de d_{5}

Barême : 0.5 point pour a juste et 0.5 point pour b juste

La droite coupe l’axe des ordonnées en 5 donc b=5

A partir du point de la droite de coordonnées (0;5), j’avance horizontalement de 1 vers la droite. Pour retomber sur la droite, je descends de 2  donc a=-2

Je remplace a et b  par -2 et 5 et dans l’équation y=ax+b et donc :

L’équation réduite de d_{5}  est  y=-2x+5

 

Réponse:

\overrightarrow{DC}=\overrightarrow{HG}.

Résoudre graphiquement f(x)=1

C’est une autre façon de demander de déterminer graphiquement les antécédents de 1.

Je place 1 sur l’axe des ordonnées, je trace alors la parallèle à l’axe des abscisses passant par 1 toute entière. Je repère les points d’intersection avec la courbe. Les abscisses de ces points sont les antécédents de 1.

Les antécédents sont -2 et 2.

Donc S=\{-2;2\}

Remarque : comme on demande de résoudre une équation, il faut écrire ainsi l’ensemble des solutions.